Dynamical Model of Axially Moving Steel Strips

نویسنده

  • M. Saxinger
چکیده

Axially moving strips are frequently encountered in industry for various applications. On the one hand, accurate models of transverse displacements of strips are desired for plant design and safety or reliability reasons. On the other hand, the models may serve as a basis for model-based controller and observer design. For the latter also, the complexity of the models should be as low as possible. This work focuses on the development of dynamical models of the motion and elastic deformation of axially moving steel strips guided by rolls. For spatial discretization of both in-plane and out-of-plane motion, the Galerkin weighted residual method is employed and the longitudinal direction of the strip is divided into finite elements. A tailored time integration method is implemented and dynamic simulations for different boundary conditions of a strip in a hot dip galvanizing line are carried out and analyzed. The influence of the geometrical nonlinearity on the transversal displacements of the strip is investigated by means of a faulty air cooler. Finally, the affect of the geometrical nonlinearity on the dynamic and static behavior of the steel strip is investigated in more detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions

In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...

متن کامل

Investigation of Dynamical Behavior (Transverse Vibration) and Instability Analysis of Carbon Nanotubes Conveying Nanofluid

This work focuses on the dynamical behavior of carbon nanotubes, including vibration, wave propagation and fluid-structure interaction. In the present research, transverse vibration of nano fluid conveying carbon nanotubes is investigated. To this end, based on the nonlocal and strain-inertia gradient continuum elasticity theories and by using rod and Euler-Bernoulli beam models, the system’s d...

متن کامل

Dynamic Response of an Axially Moving Viscoelastic Timoshenko Beam

In this paper, the dynamic response of an axially moving viscoelastic beam with simple supports is calculated analytically based on Timoshenko theory. The beam material property is separated to shear and bulk effects. It is assumed that the beam is incompressible in bulk and viscoelastic in shear, which obeys the standard linear model with the material time derivative. The axial speed is charac...

متن کامل

Dynamic Analysis of Axially Beam on Visco - Elastic Foundation with Elastic Supports under Moving Load

For dynamic analyses of railway track structures, the algorithm of solution is very important. For estimating the important problems in the railway tracks such as the effects of rail joints, rail supports, rail modeling in the nearness of bridge and other problems, the models of the axially beam model on the elastic foundation can be utilized. For studying the effects of axially beam on the ela...

متن کامل

Longitudinal Wave Propagation Analysis of Stationary and Axially Moving Carbon Nanotubes Conveying Fluid

In this study, the effect of small-scale of both nanostructure and nano-fluid flowing through it on the natural frequency and longitudinal wave propagation are investigated. Here, the stationary and axially moving single-walled carbon nanotube conveying fluid are studied. The boundary conditions for the stationary nanotube is considering clamped-clamped and pined-pined and for the axially movin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017